

Automatic **Backwash Strainers**

TECHNICAL SPECIFICATIONS

BACKWASH-STRAINER AUTOMATIC CONTROL SYSTEMS

MAJOR COMPONENTS OF THE SYSTEM

- Local control and indication for motor, backwash actuator and differential pressure controller: switches, lights, disconnects, alarms, timers and screens as required.
- Circuit breaker protection with magnetic starter & overload for
- PLC-based control system with adjustable timers for backwash arm operation
- 4 Differential pressure override protection and monitoring
- Backwash valve actuation: Electric or pneumatic
- Pre-wired and tested for easy installation

CONTROL OPTIONS

- A 120V 230V 380V 400V 460/480V 575V 1PHor 3PH, 50 or 60 Hz
- B Enclosure construction in FRP or SS / NEMA 4/12, NEMA 4X,
- Custom built to integrate into local control center system allowing for control or supervision of other
- Several options for local/remote indication, switches, timers, touch screen controls
- Common control panel available for multiple strainer units
- Remote supervision:
 dry contacts, PLC
 based, 4-20mA, audible alarms, DH-485,
 digital/analog

MODEL ACRS-OF OFFSET BACKWASH STRAINER

GENERAL DESCRIPTION

HOW IT WORKS

Designed for the continuous removal of suspended solids

Dirty fluid enters through top inlet, clean fluid flows through bottom outlet

Fluid passes uninterruped through Wedgewire screen; suspended solids are trapped

Cleaning is accomplished by a rotating backwash arm

Backwash line at the bottom of unit ejects suspended solids

Custom built control panel provides local/remote controls and indication

Ability to remove suspended small particles from a variety of industrial applications

Close-mount backwash arm

Custom connection arrangement to suit any applicationrequirements (inline/offset) or current onsite piping

Intermittent cleaning cycle with low system pressure losses

Several control packages available with local/remote indication and controls

World-class support from highly trained technicians and engineers on demand

OPTIONS

Design

Offset & Inline models 150#, 300#,600#

Body Construciton CS, SS304/316, FRP Monel 400, D2205

Internals Construction SS316, Monel 400, D2205

Backwash Mechanism FRP/Teflon Blades

Wedgewire/Perf Screen SS316, Monel 400 50 to 6000 micron slot

Strainer Controls
PLC Fully Automated
NEMA 4/12, 4X, 7X

Additional Options
ASME Sec. VIII, Div. 1
U-Stamp, CRN, PED

		D-	
O	A		Φ
			В

DIMENSIONS FOR - OF - OFFSET UNITS										
Acme Model	Inlet / Outlet	FLOW(GPM)	FLOW(M3/H)	Α	В	C	D			
ACRS-OF-1-150-CS/SS	1" (25)	≤ 60	≤ 14	45 (1143)	30 (762)	20 (508)	69 (1753)			
ACRS-OF-2-150-CS/SS	2" (50)	≤ 100	≤ 23	45 (1143)	30 (762)	20 (508)	69 (1753)			
ACRS-OF-3-150-CS/SS	3" (75)	≤ 200	≤ 45	45 (1143)	30 (762)	20 (508)	69 (1753)			
ACRS-OF-4-150-CS/SS	4" (100)	250 - 400	57-91	48 (1219)	30 (762)	22 (559)	72 (1829)			
ACRS-OF-6-150-CS/SS	6" (150)	550-950	125-216	60 (1524)	36 (914)	24 (610)	93 (2362)			
ACRS-OF-8-150-CS/SS	8" (200)	950-1500	216-340	66 (1676)	36 (914)	26 (660)	99 (2515)			
ACRS-OF-10-150-CS/SS	10" (250)	1500-2000	340-450	55 (1397)	25 (635)	28 (711)	90 (2286)			
ACRS-OF-12-150-CS/SS	12" (300)	2000-3500	450-795	58.5 (1486)	28 (711)	34 (864)	95 (2413)			
ACRS-OF-14-150-CS/SS	14" (350)	3500-4500	795-1022	69.5 (1765)	33 (838)	36 (914)	106 (2692)			
ACRS-OF-16-150-CS/SS	16" (400)	4500-5500	1022-1250	85 (2159)	45 (1143)	40 (1016)	126 (3200)			
ACRS-OF-18-150-CS/SS	18" (450)	5500-7000	1250-1590	98.5 (2502)	32.5 (826)	50 (1270)	135 (3429)			
ACRS-OF-20-150-CS/SS	20" (500)	7000-8500	1590-1930	98.5 (2502)	32.5 (826)	50 (1270)	135 (3429)			
ACRS-OF-24-150-CS/SS	24" (600)	8500-12000	1930-2725	109 (2769)	61 (1549)	60 (1524)	150 (3810)			
ACRS-OF-30-150-CS/SS	30" (750)	12000-18000	2725-4090	110 (2794)	50 (1270)	72 (1829)	160 (4064)			
ACRS-OF-42-150-CS/SS	42" (1000)	26000-36000	5900-8175	132 (3353)	60 (1524)	96 (2438)	182 (4623)			

^{**}These dimensions are for reference only and can be changed to suit needs

PRESSURE DROP MULTIPLYING FACTORS																
						Temp	erati	ure -	Degr	ees F	ahrer	heit				
Type of Liquid	Viscosity SSU	70	80	90	100	110	120	130	140	150	160	170	180	200	220	240
Bunker "C" Fuel Oil	3000 S at 112°F	7.0	6.0	5.4	4.9	4.5	4.0	3.8	3.6	3.3	3.1	2.9	2.8	2.5	2.3	2.1
Heavy Lube Oil	500 S at 100°F	3.7	3.2	2.9	2.8	2.5	2.3	2.1	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3
Medium Lube Oil	300 S at 100°F	2.9	2.7	2.5	2.3	2.1	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.2
Light Lube Oil	150 S at 100°F	2.2	2.1	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.1	1.1	1.1	1.1

SELECTION AND ENGINEERING DATA

PERFORATED METAL SCREENS are available in brass, stainless steels, monel, etc. For fine perforations a large wire mesh may be used to provide additional rigidity.

WEDGEWIRE SCREENS used for fine screening are very rigid and more clog-resistant than wire mesh screens. They have a reinforced construction and wedge shaped profile reducing the possibility of retaining particles smaller than the screen opening.

WIRE MESH SCREENS are manufactured from woven wire cloth in a variety of metals. They are usually used for fine straining with openings unachievable with perforated metal.

SCREEN CAPACITY RATIO is the ratio between the total screen openings area and the area of the inlet pipe opening. For example: if the inlet pipe's cross section is 20 sq. in and the screen's total open area is 80 sq. in, the ratio is "4 to 1". A high ratio results in a lower pressure drop and reduces the scraping system's frequency of operation.

CLOGGED SCREENS: These charts represent the results of tests conducted with strainers containing clean screens. With screens 50% clogged pressure drop results are approximately double those shown in charts.

MULTIPLYING FACTORS: All results are based upon the use of .033 diam. through 1/4 " diam. perforations. Mesh lined perforated metal screens: multiply pressure loss by 1.25.

Inches	Millimeters	Mesh
.004	.1016	150
.007	.1778	80
.009	.2286	60
.015	.3810	40
.034	.8636	20
Inches	Millimeters	Perforation
.033	.838	1/32
.045	1.143	3/64
.070	1.778	1/16
.094	2.387	3/32
.125	3.175	1/8
.150	3.810	5/32
.1875	4.762	3/16
.250	6.350	1/4
.375	9.525	3/8
.500	12.70	1/2

CONVERSION FACT	ORS
Bars x 14.5 = PSI	
KPa x .145 = PSI	
Kg/cm ² x 14.2 = PSI	
Ft. of water x .433 = PSI	
$m^3/HR \times 4.4 = GPM$	
Liter/Min x .265 = GPM	
Tons of water/day x .166 = GPM	
Barrels (oil) x 42 = Gallons (oil)	
GPM x .4085 = Velocity ft./sec ID ² in inches	
mm x .03937 = inches	
Kilograms x 2.2 = pounds	
Mg/L = PPM	
SSU = Centistoke x 4.6347	
Centipoise = Centistoke x specific gra	avity

IN THE U.S.A.

ACME Engineering Products INC. Trimex Ind. Bldg. POB 460, PMB 10

2330 State Route 11 Mooers, New York 12958

Tel.: (518) 236-5659 Fax: (518) 236-6941

IN CANADA

ACME Engineering Products LTD.

5706 Royalmount Avenue, Montreal Quebec H4P 1K5

Tel.: (514) 342-5656 Fax: (514) 342-3131

REPRESENTED BY: